Math Problem Statement

The value of (8^-1 - 9^-1)^-1 ÷ (4^-1 - 9^-1)^-1?

Solution

The given expression is:

(8191)1÷(4191)1\left( 8^{-1} - 9^{-1} \right)^{-1} \div \left( 4^{-1} - 9^{-1} \right)^{-1}

Step-by-step Solution:

  1. Simplify the first term (8191)1\left( 8^{-1} - 9^{-1} \right)^{-1}:

    • 81=188^{-1} = \frac{1}{8} and 91=199^{-1} = \frac{1}{9}.
    • So, 8191=18198^{-1} - 9^{-1} = \frac{1}{8} - \frac{1}{9}.
    • Find the common denominator: 1819=9872=172.\frac{1}{8} - \frac{1}{9} = \frac{9 - 8}{72} = \frac{1}{72}.
    • Now, (172)1=72\left( \frac{1}{72} \right)^{-1} = 72.
  2. Simplify the second term (4191)1\left( 4^{-1} - 9^{-1} \right)^{-1}:

    • 41=144^{-1} = \frac{1}{4} and 91=199^{-1} = \frac{1}{9}.
    • So, 4191=14194^{-1} - 9^{-1} = \frac{1}{4} - \frac{1}{9}.
    • Find the common denominator: 1419=9436=536.\frac{1}{4} - \frac{1}{9} = \frac{9 - 4}{36} = \frac{5}{36}.
    • Now, (536)1=365\left( \frac{5}{36} \right)^{-1} = \frac{36}{5}.
  3. Divide the two results:

    • The expression becomes: 72365=72×536=10.\frac{72}{\frac{36}{5}} = 72 \times \frac{5}{36} = 10.

So, the value of the expression is 10.

Would you like more details or have any questions?

Related questions:

  1. How can you simplify expressions with negative exponents more efficiently? 2

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Negative Exponents
Basic Arithmetic

Formulas

a^-1 = 1/a

Theorems

Laws of Exponents

Suitable Grade Level

Grades 9-12